Planting 300,000 Trees Citywide by 2020

Branch Out Columbus 300,000 Trees by 2020
September, 15, 2015

FLOW has joined Branch Out Columbus, a citywide partnership to plant 300,000 trees by 2020.

Mayor Michael B. Coleman and Columbus City Council President Andrew J. Ginther  joined the Weinland Park community, FLOW and more than 20 other non-profit organizations to announce the start of the community wide effort to plant 300,000 trees and a pilot program to develop an urban tree nursery.  The newly planted trees will be part of an effort to increase the city’s urban tree canopy.

“The City of Columbus is committed to a 27% tree canopy by 2020, but we cannot do it alone.” said Mayor Coleman.  “That is why we are branching out by creating the “Branch Out Columbus” campaign calling for community wide action.”  Through the Recreation & Parks Foundation, the City has set up a fund at the Columbus Foundation where businesses and residents can donate money towards the planting of trees in the community.  “Trees are an important part of improving the quality of life in Columbus,” said Council President Ginther. “From cleaning the air and water to improving property values and fighting greenhouse gases, trees make Columbus a great place to live and work.”

The urban tree canopy in Columbus is currently estimated to cover 22% of the land (31,171 acres),  according to a recent assessment led by the Columbus Recreation & Parks Division of Forestry and prepared by consultant, Plan-It-Geo.  These trees provide a multitude of economic, environmental, and social benefits, conservatively valued at more than $12.1 million annually, according to the study.

Mayor Coleman and residents of the Weinland Park neighborhood also announced a pilot program for an urban tree nursery. The vacant land, owned by the City of Columbus’ Land Bank and Campus Partners, on 8th Avenue near 5th Avenue will be the city’s first Urban Tree Nursery. The vision is for the nursery to be a place where trees can grow to be planted in the neighborhood and where residents can learn about the importance of trees and how to properly care for them. The goal is to have at least four urban tree nurseries established in target neighborhoods by the year 2020.

An executive order will be prepared to preserve and restore trees on all city led construction projects. To help residents on private property, the City will pay up to a $50 rebate to plant native trees on their property while supplies last (currently there are enough funds for approximately 400 trees). The program is part of the Columbus GreenSpot Backyard Conservation Program .

For more information about the Branch Out Columbus- 300,000 trees by 2020 campaign, and to see a copy of the Urban Tree Canopy Assessment, please visit .

FLOW Receives 2015 Conservation Stewardship Award

Conservation Stewardship Award 2015Friends of the Lower Olentangy Watershed received a Conservation Stewardship Award from the Franklin County Soil and Water Conservation District.  FLOW was recognized for its enthusiasm and efforts toward promoting and improving water quality and stream life in Franklin County.


Date: September 17, 2015.

Coming Attractions


FLOW has lots to choose from this year.

Tree planting
There are many  locations available through Green Columbus ( You can request free native tree seedlings for your own use.

Butterfly gardens
FLOW is looking for sites to plant three butterfly pollinator gardens with the focus on Monarchs. Volunteers are also needed to water and weed the new gardens. Garden clubs or other groups or individuals can email FLOW.

FLOW’s Adopt-A-Pond program will continue improving more ponds in the Olentangy watershed. This includes trees, other vegetation, nutrient control and other factors that lead to healthy, clean water. Additional ponds are being sought.

Camp Mary Orton
FLOW has a big project initiative this year to remove invasive plants from a large forested area at Camp Mary Orton. This is close to the good habitat at Flint Run and the exceptional warmwater habitat reach of the Olentangy.

Olentangy Village and Clinton-Como Park
FLOW is working with the Olentangy Village Condo Association to minimize invasive plants there. This is a key spot adjacent to Clinton Como Park, which has been cleared of invasives and being replanted with native vegetation. It is also across from the OSU wetlands. Less invasive honeysuckle in the surrounding area means these areas will have a better chance of remaining native.

River Cleanups
FLOW’s river cleanup program removes trash from and around rivers. Trash is more than unsightly. Metals rust and pollute the river and plastics get covered with silt and prevent plants and animals from living there. Styrofoam breaks into bits and is eaten by fish. Cleanups will be scheduled and listed on FLOW’s website, and those walking along trails can pick up litter to help keep the river healthy.

Eyes and Ears of the River
A river steward is someone who keeps an eye on the river and reports issues. For those who want to do more, there is a need to look for bugs and check water chemistry. FLOW is planning to partner with the Sierra Club to train interested individuals.

For more Information
Unless noted otherwise, for more information about any FLOW activity, send email to and see the Facebook group Friends of the Lower Olentangy Watershed (FLOW)..

Rain Barrel Workshops

Greenspot Rain Barrel Program. Franklin County Soil and Water Conservation District.

FLOW will facilitate rain-barrel workshops with the GreenSpot Rain Barrel Program again this year. Dates will be posted on our web calendar of events, or visit for information about in-person or online workshops to become eligible for a rain barrel for a cost share of $55. If you have questions please e-mail

Rain Gardens

Rain gardens, which are depressions planted preferably with native plants, are another means to address stormwater issues. The deep root systems of the native plants allows water to infiltrate into the ground as opposed to running down the pavement and into the storm sewers. Urban rivers are heavily impacted by large volumes of stormwater that carry pollutants picked up from rooftops, driveways and roads. If you are interested in rain gardens, please visit the Central Ohio Rain Garden website.

Rain Garden Projects

Visit the rain garden project photo gallery or read the project report from FLOW Board Member Joe Tribble

Thanks to a $10,000 grant sponsored by MillerCoors and RiverNetwork, FLOW constructed a demonstration rain garden and water catchment at the Unitarian Universalist Church in Clintonville. This installation is step one in FLOW’s goal of 10 similar projects at local schools, churches, small businesses and other institutions.

Rain gardens are specially designed and planted gardens which collect rainwater and allow it to percolate slowly into the soil, reducing storm water run-off and preventing pesticides, petroleum products and other pollutants from being swept into our streams. Rain gardens also keep storm water from overloading the local sewer system.

FLOW volunteers worked with the members of the Unitarian Universalist Church to create design for the rain garden on the church’s property at 93 W. Weisheimer Road. Construction and planting were completed in early November of 2009.

Let it Rain

“Let it Rain” — a raingarden project in Central Ohio
(from an engineer’s perspective)
Joseph C. Tribble; PE, CPESC
Stormwater Consultants, LLC

Installing the dry stream
© Joseph C. Tribble

I was fortunate to have had the recent opportunity to work on a raingarden design and installation project with Amy Dutt, of Urban Wild, and members of the First Unitarian Universalist (First UU) Church of Columbus (Ohio). Both Amy and I donated much time and effort on this project, but members of the church donated a good deal of time and effort as well. In addition, they gave us trust and patience — and that was very much appreciated. Without that, the efforts of Amy and myself would have been much more difficult. There were many other contributors on this project and they are mentioned below.

Raingardens – a new stormwater management tool

After over two decades of designing subdivisions, commercial sites and roadways in central Ohio, I thought I had mastered the art of stormwater management design. Paving the landscape and piping the runoff, with a little detention (to slow flowrates down a bit) and some treatment (to remove a few pollutants) had always been a good recipe. It was fast and efficient — and getting stormwater to the rivers as quickly as possible, after all, had always been the main goal. A little erosion, especially where no one would notice, wasn’t going to hurt anything, and, if it did, we could always just add a little more rock channel protection.

It took a while for the raingarden concept to catch on with me. At first, I wasn’t too impressed with the “landscaped holes in the ground” that didn’t drain anywhere. I couldn’t envision how they would be anything more than a mere “drop in the bucket” in the overall stormwater management scheme. But, I humored my raingarden friends and, in the process, began to come around. Maybe draining stormwater into a system of “engineered” filters could remove pollutants as effectively as conventional methods. Maybe giving stormwater an opportunity to recharge the groundwater system (reducing nuisance flooding and hard costs along the way) might be beneficial as well. If we put some thought and effort into this concept, maybe raingardens could become an effective tool to manage runoff, pollution and construction costs. It could be a win-win-win scenario.

When you get down to it, raingardens are nothing more than “sexy” bioretention filters (engineered depressions that treat first-flush runoff and allow managed infiltration) anyway. But, that sexy part of raingardens (ornamental plants, dry streams, etc.) is important. In order for them to catch on as a mainstream stormwater management tool, they have to provide aesthetic appeal. Equally important, however, is the ability to get them designed and constructed efficiently. If the design-build community could find ways to aesthetically, efficiently and cost-effectively incorporate raingardens (in lieu of traditional landscaping) into site-scapes, we might be able to use them to make a positive difference in “stormwater sustainability”.

A Raingarden Opportunity

In March 2009, when Heather Dean of FLOW (Friends of the Lower Olentangy Watershed) and I became aware of grants, from MillerCoors and River Network, to create sustainability demonstration projects, we jumped at the opportunity to create a raingarden project in the Olentangy River watershed — and we knew just the place to do it. Through another endeavor, we had become familiar with the First UU Church in the Clintonville area. They were good neighbors in the community, interested in environmental stewardship and, best of all, had a property that would allow a great demonstration raingarden to be installed. With the help of Amy Dutt, Heather partnered with First UU, prepared a winning proposal (complete with a project budget and concept plan) and received one of the MillerCoors/River Network grants. The concept plan included a stone wall and native plant material, both of which matched the surrounding landscaping, and a decorative “dry stream”. Winning this proposal was exciting for me. I’d be able to work with Amy, participate in the design and construction process — and see this raingarden concept develop first-hand.

Raingarden Planning

Although I was familiar with raingardens, I had never been involved in the design or construction of one before. A successful proposal and a concept plan were a good start, but there was also the issue of making it work — and trying to get it constructed before winter. Those issues made me a little nervous. This project would require retrofitting an existing roof drainage/storm piping system and those types of projects did not always go smoothly. I didn’t know it at the time, but building this raingarden was going to require a monumental effort on the part of the church and the design team — and significant coordination and cooperation with the City of Columbus, Columbia Gas, Igel Construction and others. I didn’t know it at the time, but building this raingarden was going to be an educational experience.


The location of the raingarden was a given. The green space on the north side of the First UU property had been a perfect spot from the beginning. Rainwater from the roof area was convenient, the location was highly visible to surrounding streets and there was plenty of unencumbered area (or so we thought) to work in. Our first assignment, however, was to determine the size of the raingarden. Although there are easy equations to compute raingarden size, this calculation wasn’t that straightforward. The configuration of the existing roof and pipe system(s) created a scenario where, if designed conventionally, we would have had either a very small garden (serving only a small part of the roof area) or a very large and expensive garden (serving the much larger roof area). Neither option was consistent with our project goals and budget.

We settled on a unique design. Our approach was to construct a manageably-sized raingarden and take the entire roof area to it, but incorporate two major deviations from conventional raingarden designs. The first deviation was to inlet stormwater from the roof and pipe system into a sub-surface aggregate trench, immediately below and integral with the dry stream. This gave us some much-needed elevation difference and would allow diffusion of the concentrated pipe system flows, keeping them from eroding the raingarden surface during heavier rains. The second deviation was to provide an overflow device (in an existing upstream manhole) that would allow excess roof runoff to bypass the raingarden when it reached capacity during storms that produced more rain volume than it could handle. This would keep the raingarden from being “flooded out” on a regular basis. Both of these deviations allowed us to treat the larger amount of roof area while protecting the raingarden as well. I hope these concepts can serve as a model for future projects (Raingarden System Schematic).


With our unique design approach in hand, the next task was to get City of Columbus approval of our concept, including the required modification to the existing sewer plan for the property. As many will attest, modifying an existing plan, even without a unique design approach, was normally a time-consuming process. In this case, however, working with the City could not have been easier. With the sustainability effort in mind, they took the time to understand what we were trying to accomplish — and worked with us as we obtained the necessary construction permit. The only major requirement was that we use a licensed contractor to retrofit the existing system. The City’s final and biggest help, however, was waiving the $2000 inspection fee. Without that, starting the project may have not been possible.

Raingarden Retrofitting — expect the unexpected

Gas Line Relocation

Retrofitting anything, especially when it’s old and background information is sketchy, can be a challenge. Our First UU Raingarden project would certainly prove that to be true. Before construction, we were aware that there would be conflicts with an existing irrigation system, but we had no idea that a 20-year-old gas service line would become our main roadblock. One of our project partners, Greenworks Ecological, was scheduled to begin garden excavation, but they had not been on the job thirty minutes before the discovery of the line in our work area brought everything to a complete halt. As it turns out, the gas service line had been constructed improperly, which had made it impossible to locate prior to beginning work. Regardless, a muddy mess had been created in a very visible location and we were stopped dead in our tracks. We knew people at the City who could help us with our plan approval, but finding someone to work with at the gas company was another matter.

I can’t say enough about the effort Amy Dutt put forth in making the First UU Raingarden project a reality. In addition to donating her time for design and installation project management, she worked tirelessly to stay on top of, and resolve, any problems that arose. Amy’s work with gas company representatives paid off almost immediately. Columbia Gas became a willing partner in our project, relocating the gas service in a very timely manner and at no cost to us. Without that, continuing the project may not have been possible.


Pipe system installation

With the gas service relocation completed, we were left with one last hurdle — finding a licensed contractor to retrofit the existing manhole with the bypass device and construct the new pipe system to the garden. Once again, Amy came through. She contacted her friend Joe Igel, who graciously volunteered his company to help us out. Igel Construction completed this last piece of the raingarden infrastructure, along with some of the remaining site grading, and did so in a timely and professional manner as well. As before, this work was done at no cost to the project, allowing us to complete it within our grant budget.

Raingarden Irony

Having completed the raingarden infrastructure, all that remained now was installation of the interior stone wall, dry stream and raingarden plants. For a “normal” raingarden, this step would have been major, but, for us, it was no big deal. We had already overcome several hurdles and were now in the home stretch. The raingarden gods, however, weren’t finished with our project yet — not without sending a little rain our way. Ironic, don’t you think, that, after all that effort, we could not complete the last step because the ground surface was too wet.

Dry Stream Installation

A few dry, late October days, however, allowed the wall (with help from Jim Roberts of Watershed Organics), stream and plants to be installed — and the First UU Raingarden became a reality on November 5, 2009. There are still a few minor items on the 2010 spring punch-list, but it looks great. If we can just get past one last irony, it would be awesome. That last irony, of course, is the perfect weather we’ve had since completion. “Let it Rain” — we’d all like to see our new raingarden in action.

Final thoughts

Being a part of the First UU Raingarden project was a great experience — not only from the knowledge I gained, but from the people I had the opportunity to work with. I was surprised at the level of cooperation we received from many parties. Cooperation that, in this economy, was unexpected. Although we were successful, I caution anyone who wants to retrofit a raingarden into any existing system. Expect the unexpected — and allow for time delays and additional costs. “Stuff Happens”!!!

With that said, I’m convinced that raingardens can have a prominent place in existing system and new-build stormwater management. For new-builds, raingarden networks, if properly planned at the beginning of a project, can be a very useful tool. As with conventional designs, however, they must be strategically placed on, and interfaced with other elements of, the site. Raingardens are not appropriate in all soil situations, should be kept away from building foundations, basements and heavily-trafficked or heavily-loaded areas and, as with other stormwater management methods, should be designed to consider and avoid water back-up and freeze-thaw issues. With these precautions in mind, however, raingardens, can, in my opinion, become a viable stormwater management tool.


After over two decades, it is possible to learn something new.

© 2005 – 2014 FLOW all rights reserved.